
Page 1 of 15

Performance Evaluation and Optimization of

Math-Similarity Search

Qun Zhang and Abdou Youssef

Department of Computer Science
The George Washington University

Washington DC, 20052, USA

Abstract

Similarity search in math is to find mathematical expressions that are similar to a user’s query.
We conceptualized the similarity factors between mathematical expressions, and proposed an
approach to math similarity search (MSS) by defining metrics based on those similarity factors
[11]. Our preliminary implementation indicated the advantage of MSS compared to non-
similarity based search. In order to more effectively and efficiently search similar math
expressions, MSS is further optimized. This paper focuses on performance evaluation and
optimization of MSS. Our results show that the proposed optimization process significantly
improved the performance of MSS with respect to both relevance ranking and recall.

Keywords: optimization, performance evaluation, math similarity search, relevance ranking,
recall

1. Introduction

Math is a symbolic language with levels of abstraction, has rich structural information, and
features considerable synonymy and polysemy among expressions. These characteristics makes
math search especially challenging, and calls for similarity search. In our recent paper [11], we
proposed an approach to math similarity search (MSS) for Strict Content MathML encoded
math expressions. We identified conceptual factors of math similarity, and deduced a math
similarity metric. For a query, MSS was designed to help us find math expressions with
taxonomically similar functions, hierarchically similar structure, and/or semantically similar data
types. It was found to be able to greatly improve the performance of a math search system.

Ideally, performance evaluation of a search engine requires a benchmark infrastructure.
However, unlike the already matured text search area, math search is still evolving. The
collective effort of the mathematical community in creating benchmarks and reference data is
greatly needed. It is beginning to get attention in some recent initiatives such as the NTCIR [6]
math task led by Aizawa and Kohlhase, et al.

However, to the best of our knowledge, there is not yet a standard Strict Content MathML
encoded math query benchmark infrastructure available to us. To create a full benchmark that
can be agreed upon requires significant expertise. However, we do need some ground truth for

Page 2 of 15

our performance evaluation and system optimization. So for our research purpose, we leverage
the DLMF [2] repository.

The rest of the paper starts with a brief summary of the related work in Section 2. It then
presents a recap of the conceptual similarity factors and the similarity metric of MSS [11] in
Section 3. Section 4 gives in detail the process of performance evaluation and optimization, and
Section 5 presents the performance results. Finally, the conclusions are drawn in Section 6.

2. Background

An important aspect of search is relevance ranking. Therefore, comparison between ranking
schemes is a significant piece of the search system performance evaluation. The various existing
ranking comparison metrics can be classified into two categories: subjective comparison
metrics and statistical comparison metrics.

The former is purely based on human judgment. It is good for judging the ranking produced by
a specific search tool. Some existing research work includes [4] and [9].

Statistical comparison metrics are often based on correlation measurement, which is an
extension of the distance measure between two permutations [1], [3]. These works leverage
some classical metrics such as Kendall’s τ [5], and the standard correlation coefficient, also
known as Spearman’s ρ [8]. This type of ranking comparison metric can be programmatically
implemented to save human labor and avoid human bias in the comparison. Thus, the
statistical ranking comparison approach is selected for our research.

As mentioned earlier, performance evaluation of search systems demands a benchmark
infrastructure. The NTCIR-11 Math-2 task [6] and its optional Wikipedia subtask [7] are the only
significant ones for math search evaluation, as far as we know. The target dataset of NTCIR-11
Math-2 consists of about 100,000 scientific articles in ArXiv that are converted from LaTeX to an
XHTML format. NTCIR-11 Math-2 provides some sample queries, but there are no expected
results as reference for systematic evaluation. Rather, a pooling based relevance judgment is
proposed to run manually by human reviewers’ subjective assessment.

The NTCIR-11-Math-Wikipedia-Task, on the other hand, uses the English Wikipedia as a test
collection which is more suitable for general users compared with the NTCIR-11 Math-2. It also
provides a number of sample queries which include 2 content queries that are encoded in
Content MathML. However, there are no expected results for participants to do self-evaluation,
or any formal evaluation conducted by the organizers except a final judgment based on
participants’ oral presentations.

Both of the above research initiatives encode their dataset in XHTML, which is not yet
converted to Strict Content MathML, while our MSS is for Strict Content MathML encoded math
expressions only. This makes it challenging for us to participate in these collective efforts at this

Page 3 of 15

moment. Additionally, none of the above tasks provides any reference results for us to use as
ground truth to do performance evaluation; instead, the assessment is either done by their
organizers in a pooling based manual process or not available at all. This prevents us from
obtaining performance evaluation benefits as of now. However, it is anticipated that these
resources can be leveraged in the future once the Strict Content MathML encoded dataset and
the full set of ground truth with both queries and expected results become available, so that
more thorough and more objective performance evaluation can be done.

3. Math-Similarity Search (MSS)

The goal of MSS is that, given a math expression that is encoded in Strict Content MathML, to
identify a list of structurally and semantically similar math expressions from a library of Strict
Content MathML encoded math expressions, and sort the list by similarity according to some
similarity measure. In [11], we identified conceptual factors that capture aspects of math
similarity, and came up with a similarity metric that takes all those factors into consideration.

3.1 Math Similarity Factors

We identified five major factors to math similarity measure, with focus on the structural
and semantic aspects of math expression.

(1) Data Type

This factor is captures the superior significance (to similarity) of functions and operators
over arguments or operands (for our research purpose, there is no distinction between
function and operator), and of structure over notation.

For example, query 𝐹 = 𝐺
𝑚1𝑚2

𝑟2 , Newton’s law of universal gravitation, is more similar to

𝐹 = ke
𝑞1𝑞2

r2 , Coulomb’s law, than to a hypothetical expression 𝐹 + 𝐺 + 𝑚1 +
𝑚2

𝑟2 , containing the same set of operands and notations as the query.

(2) Taxonomic Distance of Functions
The math function’s taxonomy information is available to us through the content
dictionary (CD) attribute of Strict Content MathML. Functions in the same CD are
assumed to be more similar than functions in different CDs.

(3) Match-Depth
The more deeply nested a query is in an expression, the less similarity there is between
the query and that expression. Therefore, match-depth is used as a similarity decaying
multiplicative factor. One can utilize different models for this decay factor, such as the
exponential model, the linear model, the quadratic model, or the logarithmic model.

Page 4 of 15

(4) Query Coverage
How much of the query is covered in the returned expression is important. In general,
the greater the query coverage is, the greater the significance is to the similarity
measure.

(5) Formula vs. Non-Formula Expression
Typically in math content, formulas carry more weight than non-formula expressions.
Furthermore, because equality often implies definition or 100% precision, it should be
weighted higher than inequality.

3.2 Math Similarity Metric

MSS takes Strict Content MathML parse trees as the primary model representing math
expressions. The similarity between two math expressions is defined recursively based on
the height of the corresponding parse trees.

When the height is 0, the parse tree is a single node which can represent a constant, a
variable, or a function. The similarity between two parse trees, T1 and T2 are defined as:

 If T1 and T2 are constants: sim(T1, T2) = 1, if T1 = T2; otherwise, sim(T1, T2) = δ, 0 ≤ δ < 1.

 If T1 and T2 are variables: sim(T1, T2) = 1, if T1 = T2; otherwise, sim(T1, T2) = ζ, 0 ≤ ζ ≤ 1.

 If T1 and T2 are functions:
o sim(T1, T2) = 1, if T1 and T2 are the same function
o sim(T1, T2) = μ, if T1 and T2 are different functions of the same category in the

taxonomy, where 0 < μ < 1
o sim(T1, T2) = 0, if T1 and T2 are different functions of different categories

 If T1 and T2 are not of the same data type:
o sim(T1, T2) = ϑ, if one is constant and the other is a variable, where 0 ≤ ϑ < 1.
o sim(T1, T2) = 0, if one is a function and the other is either constant or variable

Note that δ, ζ, μ, and ϑ are parameters that will be optimized experimentally.

Figure 1: Illustration of two trees T1 and T2 of height h ≥ 1

When the heights of the two trees T1 and T2 are ≥ 1, each of them is composed of function
apply operator as root, a leftmost child representing the function name, followed by a list of
arguments which are sub-trees, as illustrated in Fig. 1. The similarity between T1 and T2 is
defined as a weighted sum of the similarity between the two functions f1 and f2, and the
similarity between the two lists of arguments:

Page 5 of 15

sim(T1, T2) = α∙sim(f1, f2) + β ∙sim({SubT11, SubT12, … SubT1p}, {SubT21, SubT22, … SubT2q}),

where 𝛼 =
𝜔

𝑝+ 𝜔
 and 𝛽 =

1

𝑝+𝜔
 are weighting factors, 𝜔 (> 1) is a boost value (for

boosting functions over arguments), and

0 ≤ sim({SubT11, SubT12, … SubT1p}, {SubT21, SubT22, … SubT2q}) ≤ 𝑝

The similarity measurement between the two lists of arguments depends on whether the
two functions, f1 and f2, are commutative. If both are non-commutative functions, the order
of the arguments is observed. The similarity between the two lists of arguments is the sum
of the similarities between the corresponding available pairs of argument sub-trees with
one from each tree:
 sim({SubT11, SubT12, …SubT1p}, {SubT21, SubT22, …SubT2q}) = ∑i=1

min(p,q) (sim(SubT1i, SubT2i)))
Otherwise, the similarity between the two lists of arguments is the similarity of the best
match between the two lists:

sim({SubT11, SubT12, … SubT1p}, {SubT21, SubT22, … SubT2q})
= max{(∑i=1

p (sim(SubT1i, SubT2 t(q, p, i))))|t(q, p, i) is the i-th element of a p-permutation of
 q}

≈ ∑i=1
min(p,q) (max{sim(SubT1i, SubT2 φ(i))| applying greedy approximation, φ(i) = 1,2, … , 𝑞

 and φ(i) ∉ {𝜑(1), 𝜑(2), … 𝜑(𝑖 − 1)}})
For partial match consideration, not only the similarity between T1 and T2 at their root level
is measured, but also the similarity between entire tree T1 and each single sub-tree of T2, as
well as the similarity between entire tree T2 and each single sub-tree of T1 are measured in
order to find the best match among all of these possibilities. Assuming T1 is the parse tree
for query,

sim(T1, T2) = max{
 (𝛼∙sim(f1, f2) + β∙sim({SubT11, SubT12, … SubT1p}, {SubT21, SubT22, … SubT2q})) ,
 dp ∙ max{ sim(T1, f2) , sim(T1, SubT21) , sim(T1, SubT22), … , sim(T1, SubT2q) },
 cp ∙ max{ sim(f1, T2) , sim(SubT11, T2) , sim(SubT12, T2), … , sim(SubT1p, T2) } },
where dp and cp are the match-depth penalty factors of different values, where dp
corresponds to the depth of T1 in T2, and cp corresponds to the depth of T2 in T1.

4. Performance Evaluation and Optimization

Even though the preliminary implementation of MSS showed some promising advantages over
the non-similarity based search, the many parameters of the MSS similarity metric must be
optimized.

4.1 Evaluation Methodology

As the DLMF math digital library is among the few available and easily accessible for us, this
research leverages the DLMF as the source for mathematical expressions repository, and we
compare our similarity search to the DLMF search system. Since there is no Strict Content

Page 6 of 15

MathML encoding of the DLMF, a significant subset of the DLMF is hand-crafted into Strict
Content MathML encoding in this research to create the test database. Then queries with
varying degrees of mathematical complexity and length were selected and encoded in Strict
Content MathML. Some sample queries are listed in [11] for reference. For each query in
the test set, we identify the expected relevant expressions from the subset of DLMF source
repository used as a test database, and further rank them manually in a relevancy based
order by a group of human experts, which are then used as a ground truth.

Each query is compared with the expressions in the test database, and a similarity value is
computed with the MSS similarity metric described in Section 3. The full list of the
expressions is then sorted by in descending order of similarity. Depending on the number of
relevant expressions in the ground truth for this particular query, the top “N” number of
expressions is selected to form the MSS hit list for this query.

Up to this point, for any given query, there are three hit lists: one from the ground truth,
another from the DLMF site returned by DLMF search, and a third from the similarity search
MSS. We compare both the MSS hit list and the DLMF hit list with the ground truth list,
based on the performance metric described in Section 4.2. The output of such comparison
shows the alignment of a hit list with the ground truth.

4.2 Performance Metric

We evaluate the performance with respect to both recall and relevance ranking. The
evaluation is done for each sample query, before the final average across all of the sample
queries is computed.

The recall measurement is fairly standard. In addition to the recall of all of the results in the
ground truth hit list, we also measure the recall of the top 10 results relative to the ground
truth

For relevance ranking comparison, we measure the correlation between the ranked list that
is returned from each search system, and the ground truth list for each sample query. The
correlation is measured by the standard correlation coefficient Spearman’s ρ, and Kendall’s
τ. ρ is standard correlation coefficient of statistical dependence between two variables. It
focuses more on absolute order, i.e. where each hit is ranked. τ is to measure the extent of
agreement between two lists. It focuses more on relative order of the hits, i.e. which comes
before which. These two correlation metrics complement each other in serving as
performance indicators.

Following the standard practice for correlation analysis, for both ρ and τ, we refer to their
critical value tables to judge statistical significance of the correlation under evaluation. For
any given sample query, depending on the size of its ground truth, i.e. the number of similar
expressions expected to return, the corresponding critical value is looked up and compared
with the computed correlation measure. The correlation appears statistically significant

Page 7 of 15

with the specific level of confidence only if the correlation measure reaches or exceeds the
critical value of that confidence level. In our research, two different confidence levels are
considered: 95% and 99%.

4.3 Optimization Concerns and Motivation

In [11] many parameters of the MSS metric need be optimized, such as taxonomic distance
values (e.g. μ) between functions, function nodes type booster value ω, query coverage
factor, etc. In the early implementation of the MSS metric, random values were used to
initialize the parameters. With preliminary experimentation being done, some reasonable
values were obtained, so that the MSS showed some performance advantage compared
with other non-similarity based math search. This was indicated in [11]. In this paper, we
conduct a systematic experimentation based optimization to arrive at optimal values of all
the parameters.

One of the similarity factors, the match-depth, is represented as a similarity-decaying
multiplicative factor in our MSS metric. As mentioned earlier, there can be several
alternative models for such decay, such as exponential decay, linear decay, quadratic decay,
or logarithmic decay. Which of these decay models performs better for MSS metric, and
how to configure these decay models along with other parameters of the MSS metric,
become part of the concerns that motivate us to start the optimization process.

In the preliminary evaluation conducted in [11], the number of results in the ground truth
for each sample query was normalized to 20. However, in reality the actual number of
expressions in the test database that are similar to each query may not be the same – if less
than 20, then the ground truth was padded with “weeds”; and if larger than 20, then
normalizing the ground truth size to 20 would limit the view or window of expressions to
examine. Either case can impact the overall system performance, e.g. recall. For this reason,
we choose to remove the ground truth size normalization across all the queries, and leave
the ground truth of all the sample queries as is.

4.4 The Optimization Process

Motivated by the above optimization concerns, we conduct a systematic optimization
process to more effectively and efficiently optimize MSS. The whole optimization process is
illustrated in Fig. 2.

This optimization process includes multiple generations of optimization. Each generation
has its own optimal trial value for each of the parameters, and its own best model for the
match-depth factor. Within one generation, all the parameters are to be optimized. For
each parameter, we step through different trial values with equal increments. For each
selected trial value, we measure the MSS system performance for each sample query by
using the performance metric to measure the recall and correlation between the MSS hit
list and the ground truth list for that query. After that, an average of those recall and

Page 8 of 15

correlation measurements from each query execution is obtained, and referenced for the
selection of best trial value for that specific parameter.

How to decide when to stop the generational evolution, needs a “convergence” criterion,
i.e. a measurement of the overall system performance across all of the queries for a given
system configuration. This is similar to the best trial value selection for a specific parameter
within a generation. Once such overall system performance of a generation does not show
any improvement compared to the previous generation, the generational evolution
terminates for the given match-depth model. However, the full optimization process does
not stop until the above generational evolution is done for each the different match-depth
models, and then the best model is identified at the end.

5. Optimization Results

In this section we show the findings of the optimization described in the previous section.
Figure 3 shows the performance data of the optimized MSS with the exponential match-depth
model: 𝑎𝑘, where 𝑘 is the match-depth. The top two charts show the relevance ranking over
the sample queries where the left one shows the τ metric, and the right one shows the ρ metric.
Both of these two charts have reference critical values marked out, where the green solid line
indicates the critical values at 95% confidence level, and the purple dotted line indicates the

begin

for each different match-depth model

 for each generation of parameters do

 for each parameter

 for trial-value of current parameter

 for each query

 run MSS search;

 collect similarity measurement;

 get hits;

 conduct recall & correlation analysis;

 end-for

 evaluate average performance across all queries;

 end-for

 pick the best trial-value for current parameter

 end-for

 if (this generation did not improve over previous generation)

 stop generation evolution;

 flag “converged” for current model;

 end-if

 end-for

end-for

pick the best model set;

end

Figure 2: Illustration of MSS Optimization Process

Page 9 of 15

critical values at 99% confidence level. The fact that the MSS’s correlation measures are mostly
above the critical values indicate the improvement over DLMF search is statistically significant.
The bottom two charts show the recall over the sample queries, where the left shows the
overall recall, and the right one shows the recall relative to the top ten results. Both recall and
correlation show the advantage of MSS over DLMF search, and show substantial improvement
in performance throughput over the preliminary implementation presented in [11]. Overall
recall improves 76% reaching 0.7467, and recall of top 10 hits improves 51% reaching 0.8575.

Figure 3: Performance Data of Optimized MSS with Exponential Match-Depth

Figure 4 shows the performance data of the optimized MSS with the linear match-depth model:
max (1 − 𝑏 ∙ 𝑘, 𝜀), where 𝑘 is the match-depth and 𝜀 is a small positive constant to ensure that
the value of the decay factor stays positive. The linear match-depth model based MSS at its
optimal setting outperforms the DLMF search with respect to both correlation and recall .
Figure 5 shows the performance data of the optimized MSS with the quadratic match-depth
model: max (1 − 𝑐 ∙ 𝑘2, 𝜀), where 𝑘 and 𝜀 are defined as those in linear model. The quadratic
match-depth model based MSS however underperforms the DLMF search in correlation and
recall of the top ten results, even though the overall recall at its optimal setting is slightly higher
than that of DLMF search. Based on our experimentations, the performance of both of these
two models cannot reach that of the exponential model.

Page 10 of 15

Figure 4: Performance Data of Optimized MSS with Linear Match-Depth

Page 11 of 15

Figure 5: Performance Data of Optimized MSS with Quadratic Match-Depth

Figure 6 shows the performance data of the optimized MSS with the logarithmic match-depth
model: max (1 − 𝑑 ∙ ln (𝑘 + 1), 𝜀), where 𝑘 is the match-depth and 𝜀 are as before.
Interestingly, as shown in the performance data charts of Fig. 6, our experimentation indicates
that the logarithmic match-depth model performs the best – the recall and correlation
measurements at the optimal setting are all higher than those of other match-depth models.
The τ and ρ correlation measures reach the greatest: 0.4737 and 0.4928 respectively, which are
136% and 207% higher than those of DLMF search, while the overall recall and the recall of top
ten results reach 0.8251 and 0.9075, which are 137% and 109% higher than those of DLMF
search respectively. Clearly, MSS with the logarithmic match-depth model shows not only
significantly greater relevance ranking and recall, but also more consistency. The logarithmic
match-depth model demonstrates the maximal advantage of MSS over DLMF search.

Page 12 of 15

Figure 6: Performance Data of Optimized MSS with Logarithmic Match-Depth

The MSS with the logarithmic match-depth model shows its optimal performance after ten
generations of optimization. Figure 7 shows the relevance ranking improvement throughout
the optimization process, in terms of the τ and ρ correlation measures. Figure 8 shows the
recall improvement, with respect to both the overall recall and the top-10 recall. Both of these
figures also show the performance data of DLMF search, which appears constant across the
different generations of optimization of MSS. As shown in both Fig. 7 and Fig. 8, the
performance improvement over the evolution of the initial five generations is more significant
than that of the later five generations. Over the complete ten generations of optimization
process, all of the four performance metrics data improved substantially with more than 20%
growth, among which the ρ correlation measure more than doubled.

Page 13 of 15

Figure 7: Relevance Ranking Improvement over Optimization of

MSS with Logarithmic Match-Depth Model

Figure 8: Recall Improvement over Optimization of MSS with Logarithmic Match-Depth Model

In order to avoid the problem of over-fitting of the parameters to the training data, and to
obtain a more objective assessment of performance, we conducted cross-validation-based
optimization and performance evaluation.

Generally in cross-validation, we train (optimize) a system on a dataset called the “training set”,
and perform testing on a different dataset called the “validation set” or “test set”. To adopt the
cross-validation technique in optimization and performance evaluation of MSS system, we
partition all of the 40 sample queries randomly into two disjoint subsets of equal size, one of
which is used as the training set for optimization and the other as test set for performance

Page 14 of 15

evaluation. Such crossvalidation is applied to MSS system with all the four different match-
depth models. The performance results are shown in Table 1.

As shown in Table 1, with cross-validation, the performance results of MSS largely agree with
those obtained without cross-validation. Particularly, both with and without cross-validation, it
turns out that the logarithmic match-depth decaying model is the best model of all the four
alternatives, and under that model, all of our four performance metrics achieve the same level
with as without cross-validation. This lends more confidence to the robustness of the optimized
values of the parameters, and more validation to our results.

Table 1: Performance Result Without vs. With Cross Validation

Math Search System

Recall Metric Relevance Ranking Metric

Ave. Overall

Recall

Ave. Top 10

Recall

Ave. ρ

Correlation

Ave. τ

Correlation

MSS
(Exponential

Model)

W/O Cross-Validation 0.7467 0.8575 0.4091 0.4657

W/ Cross-Validation 0.7785 0.87 0.4104 0.4490

MSS
(Linear
Model)

W/O Cross-Validation 0.5835 0.725 0.1824 0.4040

W/ Cross-Validation 0.5904 0.735 0.1943 0.4168

MSS
(Quadratic

Model)

W/O Cross-Validation 0.3631 0.4225 -0.5625 0.1261

W/ Cross-Validation 0.2796 0.27 -0.7955 0.0654

MSS
(Logarithmic

Model)

W/O Cross-Validation 0.8251 0.9075 0.4928 0.4737

W/ Cross-Validation 0.8288 0.89 0.4807 0.4528

DLMF

on 40 Full Set 0.3476 0.435 -0.3812 0.2006

on 20 Test Set 0.3729 0.47 -0.3561 0.2117

6. Summary and Conclusions

MSS takes structural aspects of math expressions into serious consideration, honors the
semantic significance of function as opposed to argument, and further differentiates functions
by their taxonomic distance. With MSS, partial match of query can be detected and weighted
based on the coverage. Additionally, equations (a.k.a. formulas) are differentiated from

Page 15 of 15

expressions (non-formulas) in MSS, and ranked higher. All of these make MSS discover more
effectively the math expressions that are similar to queries, and rank them better.

In order to quantitatively evaluate the performance of MSS, relevance ranking and recall based
performance metrics were used. Furthermore, a systematic optimization process was
conducted which improved the performance of MSS substantially. Our experiments show that
the MSS with a logarithmic match-depth decay model performs better than the MSS with other
match-depth decay models. Finally, cross-validation was applied to the optimization and
performance evaluation, and obtained the results lead that agreed with the conclusions drawn
through the prior experiments. The performance data after optimization validate more
sufficiently the advantage of math similarity search over non-similarity based search typified by
the DLMF.

References

[1] Judit Bar-Ilan. Comparing rankings of search results on the Web. Information Processing &
Management, 41, 1511-1519, Elsevier, 2005.

[2] The Digital Library of Mathematical Functions (DLMF), the National Institute
of Standards and Technology (NIST). http://dlmf.nist.gov/

[3] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k lists. ACM-SIAM Journal on
Discrete Mathematics, 17(1), 134-160, 2003.

[4] D. Hawking, N. Craswell, P. Bailey, and K. Griffiths. Measuring search engine quality.
Information Retrieval, 4, 33-59, Springer Netherlands, 2001.

[5] Maurice G. Kendall. Rank Correlation Methods. New York, Hafner Publishing Co., 1955.

[6] The 11th National Institute of Informatics Testbeds and Community for Information access
Research Workshop. http://ntcir-math.nii.ac.jp/. 2013 - 2014.

[7] An optional free subtask of the NTCIR-11 Math-2 Task. http://ntcir11-wmc.nii.ac.jp. 2014.

[8] Charles Spearman. The proof and measurement of association between two things. Amer. J.
Psychol. 15: 72–101, 1904.

[9] L. Vaughan. New measurements for search engine evaluation proposed and tested.
Information Processing & Management, 40(4), 677-691, Elsevier, 2004.

[10] Abdou Youssef. Methods of Relevance Ranking and Hit-Content Generation in Math Search.
Calculemus/MKM, 2007.

[11] Qun Zhang and Abdou Youssef. An Approach to Math-Similarity Search. International
Conference, CICM 2014, Coimbra, Portugal, July 7-11, 2014. Proceedings pp 404-418. 2014.

http://ntcir-math.nii.ac.jp/
http://ntcir11-wmc.nii.ac.jp/

